Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Infect Dis ; 23(1): 190, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2275368

RESUMEN

BACKGROUND: Multiple factors shape the temporal dynamics of the COVID-19 pandemic. Quantifying their relative contributions is key to guide future control strategies. Our objective was to disentangle the individual effects of non-pharmaceutical interventions (NPIs), weather, vaccination, and variants of concern (VOC) on local SARS-CoV-2 transmission. METHODS: We developed a log-linear model for the weekly reproduction number (R) of hospital admissions in 92 French metropolitan departments. We leveraged (i) the homogeneity in data collection and NPI definitions across departments, (ii) the spatial heterogeneity in the timing of NPIs, and (iii) an extensive observation period (14 months) covering different weather conditions, VOC proportions, and vaccine coverage levels. FINDINGS: Three lockdowns reduced R by 72.7% (95% CI 71.3-74.1), 70.4% (69.2-71.6) and 60.7% (56.4-64.5), respectively. Curfews implemented at 6/7 pm and 8/9 pm reduced R by 34.3% (27.9-40.2) and 18.9% (12.04-25.3), respectively. School closures reduced R by only 4.9% (2.0-7.8). We estimated that vaccination of the entire population would have reduced R by 71.7% (56.4-81.6), whereas the emergence of VOC (mainly Alpha during the study period) increased transmission by 44.6% (36.1-53.6) compared with the historical variant. Winter weather conditions (lower temperature and absolute humidity) increased R by 42.2% (37.3-47.3) compared to summer weather conditions. Additionally, we explored counterfactual scenarios (absence of VOC or vaccination) to assess their impact on hospital admissions. INTERPRETATION: Our study demonstrates the strong effectiveness of NPIs and vaccination and quantifies the role of weather while adjusting for other confounders. It highlights the importance of retrospective evaluation of interventions to inform future decision-making.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Pandemias/prevención & control , Estudios Retrospectivos , Control de Enfermedades Transmisibles , Vacunación , Tiempo (Meteorología) , Francia/epidemiología
2.
iScience ; 26(4): 106222, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: covidwho-2240836

RESUMEN

We conducted a cross-sectional study for SARS-CoV-2 anti-S1 IgG prevalence in French blood donors (n = 32605), from March-2020 to January-2021. A mathematical model combined seroprevalence with a daily number of hospital admissions to estimate the probability of hospitalization upon infection and determine the number of infections while correcting for antibody decay. There was an overall seroprevalence increase over the study period and we estimate that ∼15% of the French population had been infected by SARS-CoV-2 by January-2021. The infection/hospitalization ratio increased with age, from 0.31% (18-30yo) to 4.5% (61-70yo). Half of the IgG-S1 positive individuals had no detectable antibodies 4 to 5 months after infection. The seroprevalence in group O donors (7.43%) was lower (p = 0.003) than in A, B, and AB donors (8.90%). We conclude, based on seroprevalence data and mathematical modeling, that a large proportion of the French population was unprotected against severe disease prior to the vaccination campaign.

3.
Elife ; 112022 05 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1856226

RESUMEN

Evaluating the characteristics of emerging SARS-CoV-2 variants of concern is essential to inform pandemic risk assessment. A variant may grow faster if it produces a larger number of secondary infections ("R advantage") or if the timing of secondary infections (generation time) is better. So far, assessments have largely focused on deriving the R advantage assuming the generation time was unchanged. Yet, knowledge of both is needed to anticipate the impact. Here, we develop an analytical framework to investigate the contribution of both the R advantage and generation time to the growth advantage of a variant. It is known that selection on a variant with larger R increases with levels of transmission in the community. We additionally show that variants conferring earlier transmission are more strongly favored when the historical strains have fast epidemic growth, while variants conferring later transmission are more strongly favored when historical strains have slow or negative growth. We develop these conceptual insights into a new statistical framework to infer both the R advantage and generation time of a variant. On simulated data, our framework correctly estimates both parameters when it covers time periods characterized by different epidemiological contexts. Applied to data for the Alpha and Delta variants in England and in Europe, we find that Alpha confers a+54% [95% CI, 45-63%] R advantage compared to previous strains, and Delta +140% [98-182%] compared to Alpha, and mean generation times are similar to historical strains for both variants. This work helps interpret variant frequency dynamics and will strengthen risk assessment for future variants of concern.


Mutations in genes of the SARS-CoV-2 virus have generated new variants of concern, like Alpha, Delta, and more recently Omicron. These strains contain genetic modifications that help the virus spread more easily as well as altering the severity of the illness it causes. This has led to rising numbers of infections, known as epidemic waves, in many parts of the world. Tracking new variants of concern is crucial to protecting the public. To do this, scientists monitor how many people one person with the virus can infect, also known as the number of secondary infections. They may also measure when in the course of the illness an individual may pass along the virus to others. Together, these metrics help determine how fast and large an outbreak caused by a new variant will grow. The more people the new variant infects and the quicker it spreads, the more likely it is to replace existing strains of the virus. So far, most studies have assumed that the growth rate of a new variant solely depends on the number of secondary infections, and the timing of secondary infections is often not considered. To address this, Blanquart et al. built a mathematical model that combines both these parameters to determine the growth rate of new viral strains. The model showed that variants which rapidly cause secondary infections have a larger growth advantage over existing strains when the virus is more easily transmitted between individuals and the epidemic spreads rapidly. But when there is less transmission and the epidemic is declining, variants that generate secondary infections after a longer time have an advantage. For example, when control measures like mask wearing or social distancing are in place, delayed secondary infections may be more advantageous. Blanquart et al. then applied their model to data from the Alpha and Delta variant outbreaks in the United Kingdom. They found that Alpha and Delta did not change the timing of secondary infections compared to previously circulating strains. But the Alpha variant had a 54% transmission advantage over previous strains and the Delta variant had a 140% transmission advantage over Alpha. Taken together, these findings suggest that the timing of secondary infections and transmission rates both play an important role in how quickly a virus spreads. The new mathematical model created by Blanquart et al. may help epidemiologists better predict the trajectory of new SARS-CoV-2 variants and determine how to best control their spread.


Asunto(s)
COVID-19 , Coinfección , COVID-19/epidemiología , Humanos , Pandemias , SARS-CoV-2/genética
4.
Proc Natl Acad Sci U S A ; 119(18): e2103302119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1815692

RESUMEN

Short-term forecasting of the COVID-19 pandemic is required to facilitate the planning of COVID-19 health care demand in hospitals. Here, we evaluate the performance of 12 individual models and 19 predictors to anticipate French COVID-19-related health care needs from September 7, 2020, to March 6, 2021. We then build an ensemble model by combining the individual forecasts and retrospectively test this model from March 7, 2021, to July 6, 2021. We find that the inclusion of early predictors (epidemiological, mobility, and meteorological predictors) can halve the rms error for 14-d­ahead forecasts, with epidemiological and mobility predictors contributing the most to the improvement. On average, the ensemble model is the best or second-best model, depending on the evaluation metric. Our approach facilitates the comparison and benchmarking of competing models through their integration in a coherent analytical framework, ensuring that avenues for future improvements can be identified.


Asunto(s)
COVID-19 , COVID-19/epidemiología , Atención a la Salud , Francia/epidemiología , Necesidades y Demandas de Servicios de Salud , Humanos , Pandemias/prevención & control , Estudios Retrospectivos
5.
Am J Epidemiol ; 191(7): 1224-1234, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1722205

RESUMEN

Several studies have characterized the effectiveness of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. However, estimates of their impact on transmissibility remain limited. Here, we evaluated the impact of isolation and vaccination (7 days after the second dose) on SARS-CoV-2 transmission within Israeli households. From December 2020 to April 2021, confirmed cases were identified among health-care workers of the Sheba Medical Centre and their family members. Recruited households were followed up with repeated PCR for at least 10 days after case confirmation. Data were analyzed using a data augmentation Bayesian framework. A total of 210 households with 215 index cases were enrolled; 269 out of 667 (40%) susceptible household contacts developed a SARS-CoV-2 infection. Of those, 170 (63%) developed symptoms. Compared with unvaccinated and unisolated adult/teenager (aged >12 years) contacts, vaccination reduced the risk of infection among unisolated adult/teenager contacts (relative risk (RR) = 0.21, 95% credible interval (CrI): 0.08, 0.44), and isolation reduced the risk of infection among unvaccinated adult/teenager (RR = 0.12, 95% CrI: 0.06, 0.21) and child contacts (RR = 0.17, 95% CrI: 0.08, 0.32). Infectivity was reduced in vaccinated cases (RR = 0.25, 95% CrI: 0.06, 0.77). Within households, vaccination reduces both the risk of infection and of transmission if infected. When contacts were unvaccinated, isolation also led to important reductions in the risk of transmission.


Asunto(s)
Vacuna BNT162 , COVID-19 , Adolescente , Adulto , Vacuna BNT162/administración & dosificación , Teorema de Bayes , COVID-19/epidemiología , COVID-19/prevención & control , Niño , Composición Familiar , Humanos , Israel/epidemiología , SARS-CoV-2
6.
Lancet Public Health ; 6(6): e408-e415, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1246268

RESUMEN

BACKGROUND: Regional monitoring of the proportion of the population who have been infected by SARS-CoV-2 is important to guide local management of the epidemic, but is difficult in the absence of regular nationwide serosurveys. We aimed to estimate in near real time the proportion of adults who have been infected by SARS-CoV-2. METHODS: In this modelling study, we developed a method to reconstruct the proportion of adults who have been infected by SARS-CoV-2 and the proportion of infections being detected, using the joint analysis of age-stratified seroprevalence, hospitalisation, and case data, with deconvolution methods. We developed our method on a dataset consisting of seroprevalence estimates from 9782 participants (aged ≥20 years) in the two worst affected regions of France in May, 2020, and applied our approach to the 13 French metropolitan regions over the period March, 2020, to January, 2021. We validated our method externally using data from a national seroprevalence study done between May and June, 2020. FINDINGS: We estimate that 5·7% (95% CI 5·1-6·4) of adults in metropolitan France had been infected with SARS-CoV-2 by May 11, 2020. This proportion remained stable until August, 2020, and increased to 14·9% (13·2-16·9) by Jan 15, 2021. With 26·5% (23·4-29·8) of adult residents having been infected in Île-de-France (Paris region) compared with 5·1% (4·5-5·8) in Brittany by January, 2021, regional variations remained large (coefficient of variation [CV] 0·50) although less so than in May, 2020 (CV 0·74). The proportion infected was twice as high (20·4%, 15·6-26·3) in 20-49-year-olds than in individuals aged 50 years or older (9·7%, 6·9-14·1). 40·2% (34·3-46·3) of infections in adults were detected in June to August, 2020, compared with 49·3% (42·9-55·9) in November, 2020, to January, 2021. Our regional estimates of seroprevalence were strongly correlated with the external validation dataset (coefficient of correlation 0·89). INTERPRETATION: Our simple approach to estimate the proportion of adults that have been infected with SARS-CoV-2 can help to characterise the burden of SARS-CoV-2 infection, epidemic dynamics, and the performance of surveillance in different regions. FUNDING: EU RECOVER, Agence Nationale de la Recherche, Fondation pour la Recherche Médicale, Institut National de la Santé et de la Recherche Médicale (Inserm).


Asunto(s)
COVID-19/epidemiología , Vigilancia en Salud Pública/métodos , Adulto , Distribución por Edad , Anciano , COVID-19/terapia , Francia/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Persona de Mediana Edad , Modelos Estadísticos , Estudios Seroepidemiológicos , Adulto Joven
7.
Lancet Reg Health Eur ; 5: 100087, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: covidwho-1142115

RESUMEN

BACKGROUND: As SARS-CoV-2 continues to spread, a thorough characterisation of healthcare needs and patient outcomes, and how they have changed over time, is essential to inform planning. METHODS: We developed a probabilistic framework to analyse detailed patient trajectories from 198,846 hospitalisations in France during the first nine months of the pandemic. Our model accounts for the varying age- and sex- distribution of patients, and explore changes in outcome probabilities as well as length of stay. FINDINGS: We found that there were marked changes in the age and sex of hospitalisations over the study period. In particular, the proportion of hospitalised individuals that were >80y varied between 27% and 48% over the course of the epidemic, and was lowest during the inter-peak period. The probability of hospitalised patients entering ICU dropped from 0·25 (0·24-0·26) to 0·13 (0·12-0·14) over the four first months as case numbers fell, before rising to 0·19 (0·19-0·20) during the second wave. The probability of death followed a similar trajectory, falling from 0·25 (0·24-0·26) to 0·10 (0·09-0·11) after the first wave before increasing again during the second wave to 0·19 (0·18-0·19). Overall, we find both the probability of death and the probability of entering ICU were significantly correlated with COVID-19 ICU occupancy. INTERPRETATION: There are large scale trends in patients outcomes by age, sex and over time. These need to be considered in ongoing healthcare planning efforts. FUNDING: INCEPTION.

9.
Science ; 369(6500): 208-211, 2020 07 10.
Artículo en Inglés | MEDLINE | ID: covidwho-260345

RESUMEN

France has been heavily affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and went into lockdown on 17 March 2020. Using models applied to hospital and death data, we estimate the impact of the lockdown and current population immunity. We find that 2.9% of infected individuals are hospitalized and 0.5% of those infected die (95% credible interval: 0.3 to 0.9%), ranging from 0.001% in those under 20 years of age to 8.3% in those 80 years of age or older. Across all ages, men are more likely to be hospitalized, enter intensive care, and die than women. The lockdown reduced the reproductive number from 2.90 to 0.67 (77% reduction). By 11 May 2020, when interventions are scheduled to be eased, we project that 3.5 million people (range: 2.1 million to 6.0 million), or 5.3% of the population (range: 3.3 to 9.3%), will have been infected. Population immunity appears to be insufficient to avoid a second wave if all control measures are released at the end of the lockdown.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Cuarentena , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/mortalidad , Costo de Enfermedad , Cuidados Críticos , Femenino , Francia/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Inmunidad , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/inmunología , Neumonía Viral/mortalidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA